πŸ“… 2023-11-07 β€” Session: Structured Categorization of Economic Data Distributions

πŸ•’ 04:10–05:00
🏷️ Labels: Economic Data, Categorization, Python, Dataframe, Macroeconomics
πŸ“‚ Project: Dev
⭐ Priority: MEDIUM

Session Goal

The session aimed to develop a structured categorization framework for economic data distributions, focusing on organizing and analyzing economic indicators from the Ministry of Economy.

Key Activities

  • CategorizaciΓ³n de Temas de Series de Tiempo: An initial thematic categorization was proposed to organize time series data into major themes and subthemes, enhancing accessibility and analysis.
  • Categorization of Economic Distributions: Key economic distributions relevant to macroeconomics, such as GDP and sectoral gross value added, were categorized to highlight significant economic indicators.
  • Correction of DataFrame Example Data: Identified and corrected errors in example data for a DataFrame constructor, ensuring consistent array lengths.
  • Python Function for Metadata Summary: Developed a Python function to retrieve and summarize metadata for specific distribution IDs within a DataFrame.
  • Categorization of Economic Data Distributions: A structured framework was established to categorize economic data into themes like Economic Activity and Growth, Labor Market, and Sectoral Analysis.

Achievements

  • Established a comprehensive framework for categorizing economic data, facilitating better organization and analysis.
  • Corrected data inconsistencies in DataFrame examples, improving data integrity.
  • Developed a Python function for effective metadata retrieval and summarization.

Pending Tasks

  • Further refinement and validation of the categorization framework to ensure it meets analytical needs.
  • Implementation of the Python function in a real-world dataset to test its effectiveness.