📅 2024-04-09 — Session: Automated CI/CD Implementation for ML Ops
🕒 00:00–01:40
🏷️ Labels: CI/CD, Github Actions, Ml Ops, Automation, Python
📂 Project: Dev
⭐ Priority: MEDIUM
Session Goal
The primary objective was to establish a robust CI/CD pipeline for ML Ops using GitHub Actions, focusing on automating data updates, model retraining, and workflow orchestration.
Key Activities
- Automatización de Actualizaciones en ML Ops: Developed a strategy for automated workflow management in ML Ops, covering data detection to model updates.
- Implementación de CI/CD con GitHub Actions: Implemented CI/CD using GitHub Actions to automate data preprocessing and model retraining.
- Automatización de Actualización de Microdatos: Configured GitHub Actions to automate microdata updates, including scheduling and dependency management.
- Diseño de Procesos Robustos en ML Ops: Planned a modular approach for ML Ops processes to enhance scalability and collaboration.
- Mejoras en Scripts de ML Ops: Proposed improvements for ML Ops scripts focusing on modularity and error handling.
- Implementación de Workflows en GitHub Actions: Detailed the creation of workflows for data preprocessing and model updates in ML Ops.
- Uso de
__init__.pyen Proyectos de Python: Explained the use of__init__.pyfor better project structure in Python. - Reconciliación de Cambios en Git: Provided a guide for synchronizing local and remote Git repositories.
- Limpiar Repositorio de Git y Actualizar .gitignore: Outlined steps to clean Git repositories and update
.gitignorefiles.
Achievements
- Established a comprehensive CI/CD pipeline using GitHub Actions for ML Ops.
- Enhanced script modularity and error handling in ML Ops projects.
- Improved Git repository management and synchronization.
Pending Tasks
- Further testing of the CI/CD workflows to ensure reliability and efficiency.
- Documentation of the implemented workflows for team collaboration.